Every Abelian ℓ-Group is Ultrasimplicial
نویسندگان
چکیده
منابع مشابه
Every Abelian Group Is a Class Group
Let T be the set of minimal primes of a Krull domain A. If S is a subset of T9 we form B = n AP for PeS and study the relation of the class group of B to that of A. We find that the class group of B is always a homomorphic image of that of A. We use this type of construction to obtain a Krull domain with specified class group and then alter such a Krull domain to obtain a Dedekind domain with t...
متن کاملAbelian Groups That Are Direct Summands of Every Containing Abelian Group
It is a well known theorem that an abelian group G satisfying G = nG for every positive integer n is a direct summand of every abelian group H which contains G as a subgroup. It is the object of this note to generalize this theorem to abelian groups admitting a ring of operators, and to show that the corresponding conditions are not only sufficient but are at the same time necessary. Finally we...
متن کاملWhen every $P$-flat ideal is flat
In this paper, we study the class of rings in which every $P$-flat ideal is flat and which will be called $PFF$-rings. In particular, Von Neumann regular rings, hereditary rings, semi-hereditary ring, PID and arithmetical rings are examples of $PFF$-rings. In the context domain, this notion coincide with Pr"{u}fer domain. We provide necessary and sufficient conditions for...
متن کاملHow Abelian is a Finite Group?
A well known theorem of G. A. Miller [4] (see also [2]) shows that a p-group of order p" where n > v(v 1)/2 contains an Abelian subgroup of order p° . It is clear that this theorem together with Sylow's Theorem implies that any finite group of large order contains an Abelian p-group of large order . In this note we use simple number theoretic considerations to make this implication more precise...
متن کاملAutomorphisms Fixing Every Normal Subgroup of a Nilpotent-by-abelian Group
Among other things, we prove that the group of automorphisms fixing every normal subgroup of a (nilpotent of class c)-by-abelian group is (nilpotent of class ≤ c)-by-metabelian. In particular, the group of automorphisms fixing every normal subgroup of a metabelian group is soluble of derived length at most 3. An example shows that this bound cannot be improved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2000
ISSN: 0021-8693
DOI: 10.1006/jabr.1999.8163